
ChaOps
Chaos Engineering in a world of DevOps

Who am I?

DevOps* minded open, Cloud focused Open Source enthusiast with an
increasingly growing passion for Containers,

Orchestrators, Microservices and Chaos Engineering.

*(a lot) more Ops than Dev

Red Hat Premier Business Partner

ChaOps
Chaos Engineering in a world of DevOps

DevOps?

What is DevOps NOT?

DevOps is NOT just tools...

DevOps is NOT just a project...

DevOps is NOT development + operations...

DevOps is NOT a separate team...

DevOps is NOT just copy/paste...

DevOps is NOT foolproof...

ChaOps
Chaos Engineering in a world of DevOps

Chaos Engineering?

“Chaos Engineering is the discipline of
experimenting on a distributed system in order to

build confidence in the system’s capability to
withstand turbulent conditions in production.”

- Netflix -

http://principlesofchaos.org/

Why tempt fate?

“If it can go wrong,
it will...”

- Murphy -

“Anything that can go wrong,
will - at the worst possible moment.”

- Finagle -

How to start with Chaos Engineering?

Step 1: Define your “steady state”

Step 2: Design for failure

Step 3: Start small

Step 4: Learn & Improve

Chaos Engineering tools?

ChaOps
Designing for failure

Immutable Infrastructure

Immutable Infrastructure

Infrastructure as Code

Infrastructure as Code

Infrastructure as Code

Build resilience into your applications

Build resilience into your applications

Readiness Checks

Readiness Checks

Service
(Load Balancer)

Pod
(Application replica)

ready

Pod
(Application replica)
not ready (starting)

Without readiness check

Readiness Checks

Service
(Load Balancer)

Pod
(Application replica)

ready

Pod
(Application replica)
not ready (starting)

Without readiness check: 50% failure (when 2nd replica starting)

Readiness Checks

Service
(Load Balancer)

Pod
(Application replica)

ready

Pod
(Application replica)
not ready (starting)

With readiness check

Readiness Checks

Service
(Load Balancer)

Pod
(Application replica)

ready

Pod
(Application replica)

ready

With readiness check

Liveness Checks

Liveness Checks

Pod
(Application replica)

ready

Liveness Checks

Pod
(Application replica)

ready

Liveness Checks

Pod
(Application replica)

frozen

Without liveness check: nothing happens… (your custom monitoring might
pick it up at some point, or if it doesn’t your users will start complaining)

Liveness Checks

Pod
(Application replica)

frozen

With liveness check: frozen pod is killed, and new one automatically started
(self healing without manual intervention)

Pod
(Application replica)

ready

Self-healing systems (orchestrator)

Self-healing systems (orchestrator)

Canary Releases

Canary Releases

Service
(Load Balancer)

Pod
v1

Pod
v1

Pod
v1

Pod
v1

Pod
v1

Pod
v1

Pod
v1

Pod
v2

ChaOps
Unleash the chaos monkeys!

 Container Availability Zone Region

eu-central-1a eu-central-1b eu-central-1c us-west-1a us-west-1b us-west-1c

node 1 node 2 node 3 NODE 1 NODE 2 NODE 3

http://demo.gluo.io

http://demo.gluo.io
http://demo.eu.gluo.io

http://demo.gluo.io
http://demo.us.gluo.io

Region

eu-central-1a eu-central-1b eu-central-1c us-west-1a us-west-1b us-west-1c

node 1 node 2 node 3 NODE 1 NODE 2 NODE 3

http://demo.gluo.io

http://demo.gluo.io
http://demo.eu.gluo.io

http://chaops.io
http://us.chaops.io

eu-central-1a eu-central-1b eu-central-1c

node 1 node 2 node 3

http://demo.gluo.io

http://demo.gluo.io
http://demo.eu.gluo.io

Availability Zone

eu-central-1a eu-central-1b eu-central-1c

node 1 node 2 node 3

http://demo.gluo.io

http://demo.gluo.io
http://demo.eu.gluo.io

eu-central-1a eu-central-1b eu-central-1c

node 1 node 2

node 3

http://demo.gluo.io

http://demo.gluo.io
http://demo.eu.gluo.io

Container

eu-central-1a eu-central-1b

node 1 node 2

node 3

http://demo.gluo.io

http://demo.gluo.io
http://demo.eu.gluo.io

eu-central-1a eu-central-1b

node 1 node 2

node 3

http://demo.gluo.io

http://demo.gluo.io
http://demo.eu.gluo.io

Container

Chaos Zombie vs Sysadmin

ChaOps
Takeaways

1. Design for failure (in all layers: network,
infrastructure, application,...)

2. Embrace failure (learn from it!)
3. DevOps tools/mindset enable Chaos Engineering
4. Start small, grow gradually (not everybody is Neflix

and that is OK!)
5. Don’t fight the chaos zombies by yourself, use tools

that help you fight them!

steven@gluo.be

Red Hat Premier Business Partner

